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Review: Variational principles in mechanics

Consider the system of n variables q = (q1, . . . , qn) and Lagrangian
L(q, q̇). Equations of motion are obtained by Hamilton’s critical action
principle

δS = δ

∫ t1

t0

L(q, q̇)dt = 0

on variations δq(t0) = δq(t1) = 0. Assume q(t) = q0(t) + εδq(t) and
select the first-order terms in ε to get Euler-Lagrange equations

δS = δ

∫ t1

t0

L(q0 + εδq̇, q̇0 + εδq̇)dt

= ε

∫
∂L

∂q
δq +

∂L

∂q̇
δq̇dt + O(ε2) = ε

∫ (
∂L

∂q
− d

dt

∂L

∂q̇

)
︸ ︷︷ ︸

=0:EL eqs

δqdt + O(ε2)

Euler-Lagrange equations: − d

dt

∂L

∂q̇
+
∂L

∂q
= 0

Euler-Lagrange equations are systematic, but not always easy to
use . . .
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Motion of a rigid body

Configuration manifold: orientation matrices, Λ ∈ Q = SO(3), with
3× 3 matrices ΛTΛ = ΛΛT = Id

Lagrangian is L = L(Λ, Λ̇), Euler-Lagrange equations are given by

δ

∫
L(Λ, Λ̇)dt = 0 on matrices satisfying ΛTΛ− Id = 0

Can, in principle, write Euler-Lagrange equations with Lagrange
multipliers for 3× 3 matrices (9 equations, 6 multipliers): awkward,
see e.g. Jose & Saletan’s book.

Instead, notice that ΛT Λ̇ is an antisymmetric matrix, define body
angular velocity Ω according to (ΛT Λ̇)ij = εijkΩk and write Euler’s
equations as angular momentum conservation law

IΩ̇ = IΩ×Ω , L =
1

2
IΩ ·Ω , Ω = (ΛT Λ̇)∨ .

Here, we have explicitly assumed that the Lagrangian (kinetic
energy) depends on the body angular velocity Ω = (ΛT Λ̇)∨, and not
on the spatial angular velocity ω = (Λ̇ΛT )∨ 6= Ω, because the
moment of inertia I is constant in the body frame.
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Variational derivation of Euler’s rigid body equations

Configuration manifold Λ ∈ SO(3), a Lie group, with its Lie algebra

(tangent at unity element) of antisymmetric matrices Ω̂ ∈ so(3).

System is invariant wrt (left) rotations: L(RΛ,RΛ̇) = L(Λ, Λ̇)

Identify 3× 3 antisymmetric matrices from so(3) and vectors with

cross products, Ω̂ = Ω× using the hat map

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 , Ω̂v = Ω× v , [â, b̂]∨ = a× b

Define reduced Lagrangian ` = `(Ω), and variations Σ = (ΛT δΛ)∨

A short calculation gives
d

dt
Σ̂=

d

dt

(
Λ−1δΛ

)
= −Ω̂Σ̂ + Λ−1δΛ̇

δΩ̂= δ
(

Λ−1Λ̇
)

= −Σ̂Ω̂ + Λ−1δΛ̇
⇒

{
δΩ = Σ̇ + [Ω̂, Σ̂] or

δΩ = Σ̇ + Ω×Σ

Critical action principle is then given by

δ

∫
`(Ω)dt =

∫
∂`

∂Ω
δΩdt = −

∫ (
d

dt

∂`

∂Ω
+ Ω× ∂`

∂Ω

)
·Σ = 0

When ` = 1
2 IΩ ·Ω, we get exactly Euler’s equations of motion.
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Euler-Poincaré theory

The theory can be extended to an arbitrary Lie group

1 SO(3)→ G , an arbitrary Lie group, with its Lie algebra g.

2 Invariance L(hg , hġ) = L(g , ġ) for all fixed h ∈ G

3 Cross-products → adjoint and co-adjoint actions of Lie group

4 Poisson brackets

5 Conservation laws

6 Variational methods allow to make progress for cases that are
difficult (impossible) to analyze using force balance

7 Calculations are formal and are based on known geometric objects,
i.e., computing actions on Lie algebras etc.

8 Applications of variational methods to problems of increasing
complexity, for cases that are difficult to solve otherwise
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Exact geometric rod theory, 1

Independent variables: time t and material parameter s (not
necessarily arc length)

Dependent variables: position of the centerline r(s, t) and
orientation Λ(s, t), with (Λ, r) ∈ SE (3) (group of rotations and
translations).

Lagrangian (dots= ∂t , primes = ∂s) L = L(r, ṙ, r′,Λ, Λ̇,Λ′)

Use SE (3) symmetry reduction 1 to reduce the Lagrangian to
`(ω,γ,Ω,Γ) of the following coordinate-invariant variables

Γ = Λ−1r′ , Ω = Λ−1Λ′ , (Darboux vector) (1)

γ = Λ−1ṙ , ω = Λ−1Λ̇ .(Angular velocity) (2)

Note that symmetry reduction for elastic rods is left-invariant
(reduces to body variables).

Notation: small letters (e.g. ω,γ) denote time derivatives; capital
letters (e.g. Ω,Γ) denote the s-derivatives.

1Simo, Marsden, Krishnaprasad (1988) (SMK)
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Exact geometric rod theory, 2

Euler Poincaré theory 2 applied to elastic rods 3: consider
Σ = Λ−1δΛ ∈ so(3) and Ψ = Λ−1δr ∈ R3, and (Σ,Ψ) ∈ se(3).

δω =
∂Σ

∂t
+ ω ×Σ, δγ =

∂ψ

∂t
+ γ ×Σ + ω ×ψ (3)

δΩ =
∂Σ

∂s
+ Ω×Σ, δΓ =

∂ψ

∂s
+ Γ×Σ + Ω×ψ, (4)

Compatibility conditions (cross-derivatives in s and t are equal)
Ωt − ωs = Ω× ω , Γt + ω × Γ = γs + Ω× γ .

Critical action principle δ
∫
`dtds = 0+ (3,4) give SMK equations.

0 = δ

∫
`dtds =

∫ 〈
δ`

δω
, δω

〉
+

∫ 〈
δ`

δΩ
, δΩ

〉
+ . . .

=

∫
〈linear momentum eq,Ψ〉+ 〈angular momentum eq,Σ〉 dtds

These equations are equivalent to the Cosserat’s equations for
elastic rods (SMK1988, Ellis et al. 2009)

2See, e.g., Holm, Marsden, Ratiu 1998
3Ellis, Holm, Gay-Balmaz, VP and Ratiu, Arch. Rat.Mech. Anal., (2010)
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Elastic rods with non-local interactions
Electrostatic interactions (e.g. polymers) or van-der-Vaals forces
acting between different points in s, with the potential depending
on Euclidian distance between the charges

Static states can be computed by energy minimization 4. Dynamics
and geometry of the problem is computed in our work 5

We consider N elastic charges positioned, at each point s, at a
vector ηm(s) in the local body frame.

A charge k is at the position ck(s, t) = r(s, t) + Λ(s, t)ηk(s),
Euclidian distance dk,m(s, s ′) between charges at different points is

dk,m(s, s ′) = |cm(s ′)− ck(s)| |κ(s, s ′) + ξ(s, s ′)ηm(s ′)− ηk(s)| ,where

κ(s, s ′) :=Λ−1(s) (r(s ′)− r(s)) ∈ R3 and ξ(s, s ′) := Λ−1(s)Λ(s ′) ∈ SO(3)

Thus, the total Lagrangian is ` = `loc(ω,γ,Ω,Γ) + `np, with

`np(ξ,κ,Γ) =

∫∫
U
(
ξ(s, s ′),κ(s, s ′),Γ(s),Γ(s ′)

)
dsds ′

4See, e.g. Dichmann, Li, Maddocks, IMA Vol. Math Appl. 1996
5D. D. Holm, VP, CR Acad Sci. Paris, 2009; D. Ellis, F. Gay-Balmaz, D. D.

Holm, VP, T. S. Ratiu, ARMA, 2010
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Variations and equations of motion

Critical action principle δS = δ
∫
`loc(ω,γ,Ω,Γ) + `npdt = 0

Linear momentum equation is the term multiplying Ψ = Λ−1δr(
∂

∂t

δlloc
δγ

+ ω × δ`loc
δγ

)
+

(
∂

∂s

δ (`loc + `np)

δΓ
+ Ω× δ (`loc + `np)

δΓ

)
=
δ`loc
δρ

+

∫ (
ξ(s, s ′)

∂U

∂κ
(s ′, s)− ∂U

∂κ
(s, s ′)

)
ds ′ .

Angular momentum equation is the term multiplying Σ = (Λ−1δΛ)∨(
∂

∂t

δ`loc
δω

+ ω × δ`loc
δω

)
+

(
∂

∂s

δ`loc
δΩ

+ Ω× δ`loc
δΩ

)
=
δ`loc
δγ
× γ

+
δ (`loc + `np)

δΓ
× Γ +

δ`loc
δρ
× ρ+

∫ (
∂U

∂κ
(s, s ′)× κ(s, s ′) + Z(s, s ′)

)
ds ′ ,

where the term Z (s, s ′) is the vector given by

Ẑ (s, s ′) = ξ(s, s ′)

(
∂U

∂ξ
(s, s ′)

)T

− ∂U

∂ξ
(s, s ′)ξT (s, s ′) .

Steady helical states and stability can be computed analytically 6

6S. Benoit, D. D. Holm and VP, J. Phys A, 2011
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More complex example: a tube conveying fluid

Figure: Image of a garden hose and its mathematical description

No friction in the system, incompressible fluid, Reynolds numbers
∼ 104 (much higher in some applications), general 3D motions

Hose can stretch and bend arbitrarily (inextensible also possible)

Our work: arbitrary 3D motions, Lagrangians, Cross-section of the
hose changes dynamically with deformations: collapsible tube,
stretchable walls, compressible gas, . . .
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Previous work

Constant fluid velocity in the tube, 2D dynamics:
English: Benjamin (1961); Gregory, Päıdoussis (1966); Päıdoussis
(1998); Doare, De Langre (2002); Flores, Cros (2009), . . .
Russian: Bolotin (?) (1956), Svetlitskii (monographs 1982, 1987),
Danilin (2005), Zhermolenko (2008), Akulenko et al. (2015) . . .
Hard to generalize to 3D, Not possible to consistently incorporate
the cross-sectional dynamics

Shell models: Paidoussis & Denise (1972), Matsuzaki & Fung
(1977), Heil (1996), Heil & Pedley (1996) , . . . : Complex,
computationally intensive, difficult (impossible) to perform analytic
work for non-straight tubes.

3D dynamics from Cosserat’s model: Bauergard, Goriely & Tabor
(2010); Rivero-Rodriguez & Perez Saborid, (2015) Force balance,
hard to accommodate dynamical change of the cross-section.

Variational derivation: arbitrary Lagrangians, cross-sectional area
change, 3D dynamics, initially curved pipes, . . . 7.

7FGB & VP (CR 2014, JNLS 2015 CR 2016), FGB, Georgievskii & VP, J.,
Fluids and Struct. 2018
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Variational treatment: tubes with changing cross-sections

Rod dynamics is described by SE (3)-valued functions (rotations and
translations in space) π(s, t) = (Λ, r)(s, t).

Fluid dynamics inside the rod is described by 1D diffeomorphisms
s = ϕ(a, t), where a is the Lagrangian label.

Conservation of 1-form volume element fluid is given by the
constraint Q(Ω,Γ) = A|Γ| = Q0 ◦ ϕ−1∂sϕ

−1

Incompressibility is enforced through Lagrange multiplier (pressure)

Alternative way to write fluid conservation law is

∂tQ + ∂s(Qu) = 0

Note that commonly used Au =const does not conserve volume for
time-dependent flow 8.

The presence of fluid introduces a complication of right invariant
part in a left invariant dynamics of the tube, which have
fundamental consequences for e.g. conservation laws, dynamics etc.

8See e.g. Kudryashov et al, Nonlinear dynamics (2008) for correct
derivation in 1D

Vakhtang Putkaradze Expandable tubes conveying fluid



Mathematics preliminaries: right-invariant incompressible
fluid motion

Following Arnold (1966), describe a 3D incompressible fluid
motion by DiffVol group r = ϕ(a, t).

Eulerian fluid velocity is u = ϕt ◦ϕ−1(r, t);
symmetry-reduced Lagrangian is ` = 1/2

∫
|u|2dr.

Variations of velocity are computed as

η =δϕ ◦ϕ−1(a, t) , δu = ηt + (u · ∇)η − (η · ∇)u . (5)

Incompressibility condition

J =

∣∣∣∣ ∂r

∂a

∣∣∣∣ = 1⇒ Lagrange multiplier p . (6)

Euler equations: δ
∫
` dV dt = 0 with (5) and (6)

∂u
∂t

+ (u · ∇)u = −∇p , divu = 0
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Garden hoses: Lagrangian and symmetry reductions

1 Symmetry group of the system (ignoring gravity for now)

G = SE (3)×DiffA(R) = SO(3)sR×DiffA(R) . (7)

2 Position of elastic tube and fluid:

(π, ϕ) ·
((

Λ0, rt,0
)
, rf
)

=
(
π ·
(
Λ0, rt,0

)︸ ︷︷ ︸
left invariant

, π · rf ◦ ϕ−1(s, t)︸ ︷︷ ︸
right invariant

)
.

3 Velocities:(
vr , vf

)
=

d

dt

(
r(s, t) , r ◦ ϕ−1(s, t)

)
=
(

ṙ(s, t), ṙ ◦ ϕ−1(s, t) + r′(s, t)u(s, t)
)
. (8)

4 Change in cross-section A = A(Ω,Γ)

5 Incompressibility condition J = A(s, t)∂a∂s |Γ| = 1 with Lagrange
multiplier µ (pressure)

∂Q

∂t
+

∂

∂s
(Qu) = 0 , with Q = A|Γ| . (9)
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Equations of motion

Equations for arbitrary `(ω,γ,Ω,Γ, u) and A = A(Ω,Γ)

(∂t + ω×)
δ`

δω
+ γ × δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
−∂Q
∂Ω

µ

)
+ Γ×

(
δ`

δΓ
−∂Q
∂Γ

µ

)
= 0

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
−∂Q
∂Γ

µ

)
= 0

mt + ∂s (mu − µ) = 0, m :=
1

Q

δ`

δu

∂tQ + ∂s(Qu) = 0, Q = A|Γ|

∂tΩ = ω ×Ω + ∂sω , ∂tΓ + ω × Γ = ∂sγ + Ω× γ
See our work for linear stability analysis, nonlinear traveling wave
solutions etc. 9

For constant cross-section, these equations are equivalent to Cosserat

rod-based derivation 10

9F. Gay-Balmaz and VP, CR Acad Sci Paris (2014), JNLS (2015), FGB, D.
Georgievskii and VP, J. Fluids and Struct. (2018)

10Bauergard, Goriely & Tabor, Int. J. Solids Struct. 2010; Rivero-Rodriguez
& Perez Saborid, J. Fluids and Struct. 2015
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Linear stability calculations for a finite tube
Our linear stability generalize earlier work 11 reducing to Timoshenko’s
beam vs Euler’s beam in earlier models. Computational example:

Soft rubber tube, Young’s modulus E = 107 N/m2.

Diameter: 1cm, length: 1m, wall thickness: 2 mm.

Area deformation parameter A = A0 − K |Ω|2/2,
K = 0.1R2 = 2.5 · 10−6 m2.

2 4 6 8 u0

-4

-2

0

2

4

ImHwL

5 10 15 20ReHwL

-4

-2

0

2

4

ImHwL

Figure: Left: Im(ω) vs u (m/s), right: Im(ω) vs Re(ω). Instability of
second mode for u0 ' 5.7m/sec.

11Benjamin, JFM (1961), Gregory & Paidoussis Proc Roy Soc A (1966), see
also book by Paidoussis (2004)

Vakhtang Putkaradze Expandable tubes conveying fluid



Effect of the area change in the tube

Results for instability A = A0 − K |Ω|2/2 for K > 0 (solid black) and
K = 0 (red dashed).
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0.00 0.02 0.04 0.06 0.08

3.5

4.0

4.5

K� R2

Ωc

Figure: Left: critical velocity, m/s, Right: critical value of ω, in 1/s.
Additional results using geometric variational methods:

Analytical solutions for nonlinear traveling waves

Consideration of arbitrary nozzles at the exit

Analytical treatment of linear stability analysis for helical geometry
due to SE (3) symmetry
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Stability of initially helical tubes

In the geometric-based derivation, linearization about a helical state
reduces to a system with constant coefficients because of SE (3)
symmetry.

Helix is parameterized by its Darboux vector
Ω0 = Kπ(cosκ, sinκ, 0)T/L, with 2 parameters K and κ.

Such results are very difficult to obtain in traditional approaches.
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Flexible tubes with stretchable walls conveying fluid 12

Take, e.g. a circular cross-section, A = πR2, and R = R(s, t).

Configuration manifold

Q := F
(
[0, L],SO(3)× R3 × IR

)
×
{
ϕ : ϕ−1[0, L]→ [0, L] | ϕ diffeomorphism

}
.

where IR is the interval for allowed values of R, e.g. IR = R+.
Blue=tube; Red=fluid.

Lagrangian ` = `(ω,γ,Ω,Γ, u,R, Ṙ,R ′) (and, perhaps, R ′′ etc)

Kinetic energy of the rod:

Krod =
1

2

∫ L

0

(
α|γ|2 + aṘ2 + I(R)ω · ω

)
|Γ|ds,

Eulerian velocity u(t, s) =
(
∂tϕ ◦ ϕ−1

)
(t, s), s ∈ [0, L].

Kinetic energy of the fluid:

Kfluid =
1

2

∫ L

0

(ξ0 ◦ ϕ−1)∂sϕ
−1 |γ + Γu|2 ds,

12FGB & VP, J. Nonlinear Sciences, accepted (2018).
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Compressible fluid case

1 No incompressibility condition anymore; pressure is not a
Lagrange multiplier but a thermodynamic variable.

2 Introduce the effective line density of fluid
ξ(t, s) = ρ(t, s)Q(t, s), conservation law is

ξ(t, s) =
[
(ξ0 ◦ ϕ−1)∂sϕ

−1
]

(t, s)

3 Compressible fluid has additional internal energy density
e(ρ,S) with

Eint =

∫ L

0
ξe(ρ,S)ds.

4 The pressure and temperature are defined by thermodynamic
identities

de = −p d

(
1

ρ

)
+ TdS ⇒

p(ρ,S) = ρ2∂e

∂ρ
(ρ,S) , T (ρ,S) =

∂e

∂S
(ρ,S) .
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Equations of motion

1 Define the Lagrangian in reduced variables

`(ω,γ,Ω,Γ, u, ξ,S ,R, Ṙ)

=

∫ L

0

[
`0(ω,γ,Ω,Γ, u, ξ,R, Ṙ,R ′)− ξe(ρ, S)− pextQ

]
ds .

2 Variational principle (implicit dependence on Rs , Rss etc).

δ

∫ T

0
`(ω,γ,Ω,Γ, u, ξ,S ,R, Ṙ)dt = 0

on variations satisfying

δω =
∂Σ

∂t
+ ω ×Σ, δγ =

∂ψ

∂t
+ γ ×Σ + ω ×Ψ

δΩ =
∂Σ

∂s
+ Ω×Σ, δΓ =

∂ψ

∂s
+ Γ×Σ + Ω×Ψ,

δu = ∂tη + u∂sη − η∂su
δξ = −∂s(ξη) , δS = −η∂sS
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Equations of motion (derivation)

1 Angular momentum: terms multiplying Σ = (Λ−1δΛ)∨

2 Linear momentum: terms multiplying Ψ = Λ−1δr

3 Fluid meomentum: terms multiplying η = δϕ ◦ ϕ−1

4 Wall momentum: Euler-Lagrange equations from δR

5 Advection equations for entropy from δS

6 Incompressible fluid equations can be obtained as well with
pressure being Lagrange multiplier for incompressibility

7 Friction can be incorporated in our model using extra forces
(Lagrange-d’Alembert’s principle, neglected here)
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Equations of motion (explicit)

Introducing for brevity

D

Dt
:=

∂

∂t
+ ω× , D

Ds
:=

∂

∂s
+ Ω×

we obtain

D

Dt

δ`

δω
+ γ × δ`

δγ
+

D

Ds

δ`

δΩ
+ Γ× δ`

δΓ
= 0 Rod, angular momentum

D

Dt

δ`

δγ
+

D

Ds

δ`

δΓ
= 0 Rod, linear momentum

∂t
δ`

δu
+ u∂s

δ`

δu
+ 2

δ`

δu
∂su = ξ∂s

δ`

δξ
− δ`

δS
∂sS Fluid momentum

∂t
δ`

δṘ
− δ`

δR
= 0 Rod, wall momentum (E-L eqs)

∂tΩ = Ω× ω + ∂sω, ∂tΓ + ω × Γ = ∂sγ + Ω× γ Compatibility

∂tξ + ∂s(ξu) = 0, ∂tS + u∂sS = 0, Mass and entropy transport
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Solutions for shock waves

To derive shock conditions, (Rankine-Hugoniot), need to find
equations of motion for fluid mass, momentum and energy in
conservation form.

1 Mass: ∂tξ + ∂s(ξu) = 0
2 Fluid momentum ’conservation’

∂t
(
ξΓ·(γ + uΓ)

)
+∂s

(
uξΓ·(γ + uΓ)+pQ

)
−ξ(γ+uΓ)·(∂sγ+u∂sΓ) = p∂sQ.

3 Energy conservation : Define the linear energy density E as

E =

∫ L

0
Eds , E := ξe+Ṙ

∂`0

∂Ṙ
+ω·∂`0

∂ω
+γ·∂`0

∂γ
+u

∂`0

∂u
−`0 .

Then, ∂tE + ∂sJ = 0 for the energy flux J given by

J := ω·∂`0

∂Ω
+γ·∂`0

∂Γ
+Ṙ

∂`0

∂R ′
+u2∂`0

∂u
−ξu∂`0

∂ξ
+pγ·∂Q

∂Γ
+

(
p

ρ
+ e

)
ξu.

These conservation laws are valid for arbitrary configurations of the
tube – not necessarily a straight line.
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Rankine-Hugonoit conditions across shock waves

Integrate the conservation laws for mass, momentum and energy
across the shock

c[ρ] = [ρu]

c [ρ] Γ · γ + c [ρu] |Γ|2 = [ρu] Γ · γ +
[
ρu2
]
|Γ|2 + [p]

c

[
ρ

(
e +

1

2
|γ + Γu|2

)]
=

[
1

2
ρu |γ + Γu|2 +

p

|Γ|2
Γ · (γ + Γu) + ρue

]
1 These shock conditions are valid for arbitrary configuration of

the tube

2 They reduce for standard 1D conditions when the tube is
straight and non-deformable and motion of gas is in one
direction only

3 The conditions satisfy the condition of entropy jump across
the shock [S ] ≥ 0, so the shock is an irreversible process.

4 Impossible to guess these conditions by other methods
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An example of the shock wave solution

Shock wave is propagating in a tube with thin rubber walls similar
to the walls of a latex balloon.

5

0

y/R-

c=447.16 m/s

-51
0

x/R-

-1
-2

-3

1

-2

0

-1

3

-3

2

z/
R
-

0.74 0.76 0.78 0.8 0.82 0.84 0.86
" p/p

1.15

1.2

1.25

1.3

1.35

1.4

1.45

M

Classic shock
Tube shock

Left: an example of a shock wave propagating in the tube. Right:
Mach number of the shock as a function of shock’s strength.
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Comparison with previous works
1 Describes 1D gas motion in channel with variable cross-section

(Witham 1974)
2 Equations for incompressible fluid case reduce to the models taking

into account wall’s inertia 13 (G =flux)
∂tG + ∂s

(
α
G 2

A

)
+

A

ρ
∂sp + K

G

A
= 0 , ∂tA + ∂sG = 0,

α
∂2R

∂t2
− γ1

∂R

∂t
− a

∂2R

∂s2
− c

∂3R

∂s2∂t
+ bR = p − pext

3 Equations for incompressible fluid with stretchable walls coincides
exactly with the models of arterial blood flow in a straight tube 14 ρ0(∂tu + u∂su) = −∂sp − τ(u,A)

∂tA + ∂s(Au) = 0 , p − pext = Φ(A)− T∂ssA,

4 Describes pressure wave propagation along the tube (pulse)
13Quarteroni, Tuveri, Veneziani, Comput. Vis. Sci 2000, Formaggia,

Lamponi, Quarteroni, J Engr. Math, 2003
14Pedley & Luo Theor. Comp. Fluid Dyn 1998, Tang et al, Trans. ASME,

2009, T. Secomb Rev. Physiol. 2018
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Geometric representation and Poisson bracket

1 Let us ignore the stretchable wall for now; it will yield canonical part
of Poisson bracket, and consider only the left- and right- invariant
parts

2 Consider two Lie groups G and H, with Lie algebras g and h. G
acts on the left on a manifold P and that H acts on the right on a
manifold N:

Left :Φ : G × P → P, (g , p) 7→ Φg (p), Φg ◦ Φh = Φgh

Right :Ψ : H × N → N, (h, n) 7→ Ψh(n), Ψg ◦Ψh = Ψhg .

3 For expandable tube, g(t) = (Λ(t), r(t)) and h(t) = ϕ(t)
(dependence on s is implied); with P = (Ω,Γ) and N = (ξ,S)

4 Corresponding group actions on P and N:

(Ω,Γ) 7→ Ad(Λ,r)(Ω,Γ) + (Λ, r)∂s(Λ, r)−1,

ξ 7→ (ξ ◦ ϕ)∂sϕ and S 7→ S ◦ ϕ.
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Momentum maps

1 Given the Lie algebra elements ζ ∈ g and u ∈ h, the associated
infinitesimal generators ζP and uN , (v.f. on P, resp., N) are defined
by

ζP(p) :=
d

dε

∣∣∣∣
ε=0

Φexp(εζ)(p), resp., uN(n) :=
d

dε

∣∣∣∣
ε=0

Ψexp(εu)(n),

2 Cotangent lift momentum maps for actions of Lie groups

JL : T ∗P → g∗, 〈JL(αp), ζ〉 = 〈αp, ζP(p)〉
JR : T ∗N → h∗, 〈JR(αn), u〉 = 〈αn, uN(n)〉

3 Reduced variables in Lagrangian

Left-invariant : ζ(t) = g(t)−1ġ(t) ∈ g p(t) = Φg(t)−1 (p0) ∈ P ,

Right-invariant : u(t) = ḣ(t)h(t)−1 ∈ h n(t) = Ψh(t)−1 (n0) ∈ N.
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Lie algebra elements and variations

1 Critical action principle δ
∫ T

0
`
(
ζ(t), u(t), p(t), n(t)

)
dt = 0, on

variations satisfying

Left : δζ = σ̇ + [ζ, σ] δp = −σP(p)

Right : δu = v̇ − [u, v ] δn = −vN(n),

2 Equations of motion

d

dt

δ`

δζ
− ad∗ζ

δ`

δζ
+ JL

(
δ`

δp

)
= 0

d

dt

δ`

δu
+ ad∗u

δ`

δu
+ JR

(
δ`

δn

)
= 0

ṗ + ζP(p) = 0, ṅ + uN(n) = 0

coupled with Euler-Lagrange equations for radius, or some other set
of parameters a (e.g. for elliptical or more complex profiles)

∂

∂t

δ`

δȧ
− δ`

δa
= 0 .
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Hamiltonian structure

1 Define variables for reduced Hamiltonian as
(g(t), α(t), h(t), β(t)) ∈ T ∗(G × H)

µ(t) = g(t)−1α(t) ∈ g∗ p(t) = Φg(t)−1 (p0) ∈ P

ν(t) = β(t)h(t)−1 ∈ h∗ n(t) = Ψh(t)−1 (n0) ∈ N.
2 Then, Poisson bracket is given by

ḟ = {f , h}L + {f , h}R + {f , h}Canonical , where

{f , h}L = −
〈
µ,

[
δf

δµ
,
δh

δµ

]〉
+

〈
δf

δµ
, JL
(
δh

δp

)〉
−
〈
δh

δµ
, JL
(
δf

δp

)〉
{f , h}R = +

〈
ν,

[
δf

δν
,
δh

δν

]〉
+

〈
δf

δν
, JR

(
δh

δn

)〉
−
〈
δh

δν
, JR

(
δf

δn

)〉
.

3 For expandable tube with compressible fluid,

h(π,µ,Ω,Γ, ν, ξ, S) =

∫ L

0

(
π · ω + µ · γ + νu

)
ds − `(ω,γ,Ω,Γ, u, ξ,S) ,

π =
δ`

δω
, µ =

δ`

δγ
, ν =

δ`

δu
, ω =

δh

δπ
, γ =

δh

δµ
, u =

δh

δν
.
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Explicit expression for Poisson brackets

{f , g}L =−
∫ L

0

π ·
(
δf

δπ
× δg

δπ

)
ds −

∫ L

0

µ ·
(
δf

δµ
× δg

δπ
− δg

δµ
× δf

δπ

)
ds

−
∫ L

0

Ω ·
(
δf

δΩ
× δg

δπ
− δg

δΩ
× δf

δπ

)
ds

+

∫ L

0

(
δf

δΩ
· ∂s

δg

δπ
− δg

δΩ
· ∂s

δf

δπ

)
ds

−
∫ L

0

Ω ·
(
δf

δΓ
× δg

δµ
− δg

δΓ
× δf

δµ

)
ds

−
∫ L

0

Γ ·
(
δf

δΓ
× δg

δπ
− δg

δΓ
× δf

δπ

)
ds +

∫ L

0

(
δf

δΓ
· ∂s

δg

δµ
− δg

δΓ
· ∂s

δf

δµ

)
ds,

{f , g}R =

∫ L

0

ν

(
∂g

∂ν
∂s
∂f

∂ν
− ∂f

∂ν
∂s
∂g

∂ν

)
ds +

∫ L

0

ξ

(
∂g

∂ν
∂s
∂f

∂ξ
− ∂f

∂ν
∂s
∂g

∂ξ

)
ds

+

∫ L

0

S∂s

(
∂f

∂S

∂g

∂ν
− ∂f

∂ν

∂g

∂S

)
ds.
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Conclusions and future work

1 Similar calculations can be done for incompressible fluid with
thermal properties

2 Next steps: Porous media treated as an ensemble of
expandable tubes with certain orientations (with F.
Gay-Balmaz and T. Farkhutdinov)

3 Introduction of friction using recent variational theory of
Gay-Balmaz and Yoshimura (nonlinear, nonholonomic
constraint for entropy).

4 Experimental realization of the flow in a shock tube

5 Variational methods for a tube with a splitting channel (fork,
bifurcation).

Thank you!
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