Perception of images by the visual cortex: geometry in neuroscience

Pascal Chossat*

VI Iberoamerican meeting “Geometry, Mechanics and Control”

In the honor of James Montaldi

CIMAT, Guanajuato

(*)
The visual cortex is a multiscale complex system
The visual cortex is a multiscale complex system

How does the brain process the input signal from retina to give a global and as much as possible coherent representation of the outer world (the ”Gestalt”)? Indeed, informations from retina to visual cortex are essentially local...
The visual cortex is a multiscale complex system

How does the brain process the input signal from retina to give a global and as much as possible coherent representation of the outer world (the ”Gestalt”)?

Indeed, informations from retina to visual cortex are essentially local...

However perception is global:
The visual cortex is a multiscale complex system

How does the brain process the input signal from retina to give a global and as much as possible coherent representation of the outer world (the "Gestalt")?

Indeed, informations from retina to visual cortex are essentially local...

However perception is global:

Illusory contours
The visual cortex is a multiscale complex system

How does the brain process the input signal from retina to give a global and as much as possible coherent representation of the outer world (the "Gestalt")?

Indeed, informations from retina to visual cortex are essentially local...

However perception is global:

Illusory contours

Visual hallucinations
Outline of the talk

1. Functional architecture and geometry of the primary visual cortex.
 - Detection of contours: the primary visual cortex as a contact structure
 - Application to the occurrence of geometric hallucinations under non-visual stimulation like drugs...
 - Introducing scale as a new feature: the primary visual cortex as a symplectic structure (details in Sarti, Citti & Petitot 2008).

2. Extending 1 to contrast & selectivity: the "hyperbolic" model.
 - A recent attempt to incorporate more features to the ring model by replacing "orientation" with "structure tensor" (Gregory Faye's thesis, Inria 2013) → pattern formation problem in the hyperbolic plane.
Outline of the talk

1. Functional architecture and geometry of the primary visual cortex.
 - Detection of contours: the primary visual cortex as a contact structure
 - Application to the occurrence of geometric hallucinations under non-visual stimulation like drugs...
 (much more detailed and extended presentation is the book by Jean Petitot *Elements of Neurogeometry*, Springer 2017).
 - Introducing scale as a new feature: the primary visual cortex as a symplectic structure (details in Sarti, Citti & Petitot 2008).
Outline of the talk

1. Functional architecture and geometry of the primary visual cortex.
 - Detection of contours: the primary visual cortex as a contact structure
 - Application to the occurrence of geometric hallucinations under non visual stimulation like drugs...
 (much more detailed and extended presentation is the book by Jean Petitot *Elements of Neurogeometry*, Springer 2017).
 - Introducing scale as a new feature: the primary visual cortex as a symplectic structure (details in Sarti, Citti & Petitot 2008).

2. Extending 1 to contrast & selectivity: the "hyperbolic" model.
 A recent attempt to incorporate more features to the ring model by replacing "orientation" with "structure tensor" (Gregory Faye’s thesis, Inria 2013)
 → pattern formation problem in the hyperbolic plane.
The neuron, basic unit of the cortical complex system

- Neurons are active units, which emit spike trains along axon when input exceeds a threshold
- Synapses are either excitatory (green) or inhibitory (red)
The neuron, basic unit of the cortical complex system

- Neurons are **active units**, which emit **spike trains** along axon when input exceeds a threshold.
- Synapses are either **excitatory** (green) or **inhibitory** (red).

- In a specific brain area there are millions of neurons.
- It is relevant to consider space and time averages of the activity → continuous time evolution of **neural fields** (as measured in ECG, FMRI). Then ”neuron” means in fact ”population of neurons”.
- Synaptic plasticity allows reconfiguration of circuitry at various time scales (long-term and short-term learning, adaptation..).
Global structure of the visual cortex in primates

Signal generated on retina is transmitted to the primary visual area \(V_1 \) after filtering (smoothing) in the LGN. Then forwarded to other areas \(V_2, V_3, \ldots \).

Each neuron in \(V_1 \) responds to a local receptive field in the visual field \(VF \) where it detects orientation, contrast, spatial frequency, ocular dominance...

Typical receptive profile \(\phi \) of a neuron in \(V_1 \):

It filters the signal \(I(x, y) \) at a spatial scale \(\sigma \) with a local orientation:

\[
I_{\phi} = I \ast \phi
\]

(for example \(\phi = \partial_x^2 G \), \(G(x, y) \) Gauss function with standard deviation \(\sigma \)).
Global structure of the visual cortex in primates

Signal generated on retina is transmitted to the primary visual area $V1$ after filtering (smoothing) in the LGN. Then forwarded to other areas $V2, V3...$

Each neuron in $V1$ responds to a local receptive field in the visual field VF where it detects orientation, contrast, spatial frequency, ocular dominance...

1. Pascal Chossat*
Signal generated on retina is transmitted to the primary visual area $V1$ after filtering (smoothing) in the LGN. Then forwarded to other areas $V2, V3$...

Each neuron in $V1$ responds to a local receptive field in the visual field VF where it detects orientation, contrast, spatial frequency, ocular dominance...

Typical receptive profile φ of a neuron in $V1$:
It filters the signal $I(x, y)$ at a spatial scale σ with a local orientation: $I_\varphi = I \ast \varphi$ (for example $\varphi = \partial_x^2 G$, $G(x, y)$ Gauss function with standard deviation σ).
Small patches in the visual field VF are mapped to small patches in V1 according to a roughly $\log(z)$ law ($z \in \mathbb{C} \simeq VF$).

This retinotopic map $VF \rightarrow V1$ is an approximately conformal map. The fovea is mapped to a large domain in V1.

Retinotopic map for a macaque
Columnar structure of V1 (Hubel & Wiesel 1960's)

1. They got the Nobel prize in physiology (1981) for this discovery.

2. \(V_1 \) is composed of six "horizontal" layers. Experiments show:
 - Neurons in a vertical column detect the same orientation, except at singular columns called pinwheels where all orientations are present.
 - Neurons in adjacent columns detect different orientations by steps of \(\sim 10^\circ \).

3. The patch of adjacent columns surrounding a pinwheel defines a hypercolumn (\(\sim 0.6 \text{ mm}^2 \)), in which neurons respond to the same location in retina but to different orientations.

4. Other features are engrafted in hypercolumns: contrast, spatial frequency, ocular dominance, that could be accounted for as well.
Columnar structure of V1 (Hubel & Wiesel 1960’s)

1 They got the Nobel prize in physiology (1981) for this discovery.
Columnar structure of V1 (Hubel & Wiesel 1960’s)

1. They got the Nobel prize in physiology (1981) for this discovery.

2. V1 is composed of six "horizontal" layers. Experiments show:

- Neurons in a **vertical column** detect the same orientation, except at singular columns called **pinwheels** where all orientations are present.
- Neurons in **adjacent columns** detect different orientations by steps of $\sim 10^\circ$.

[Diagram of columnar structure]
They got the Nobel prize in physiology (1981) for this discovery.

V1 is composed of six "horizontal" layers. Experiments show:

- Neurons in a **vertical column** detect the same orientation, except at singular columns called **pinwheels** where all orientations are present.
- Neurons in **adjacent columns** detect different orientations by steps of $\sim 10^\circ$.

The patch of adjacent columns surrounding a pinwheel defines a **hypercolumn** ($\sim 0.6 \text{mm}^2$), in which neurons respond to the same location in retina but to different orientations.
Columnar structure of V1 (Hubel & Wiesel 1960’s)

1. They got the Nobel prize in physiology (1981) for this discovery.
2. V1 is composed of six "horizontal" layers. Experiments show:
 - Neurons in a vertical column detect the same orientation, except at singular columns called pinwheels where all orientations are present.
 - Neurons in adjacent columns detect different orientations by steps of $\sim 10^\circ$.
3. The patch of adjacent columns surrounding a pinwheel defines a hypercolumn ($\sim 0.6 \text{mm}^2$), in which neurons respond to the same location in retina but to different orientations.
4. Other features are engrafted in hypercolumns: contrast, spatial frequency, ocular dominance, that could be accounted for as well.
Hypercolumnar crystalline structure of V1

(i) Diametrically opposite rays correspond to orientations differing by $\pi/2$.

(ii) Pinwheels form a crystal lattice on V1.

(iii) Iso-orientation lines define a field of orientations, of which pinwheels are singular points.

(iv) Tempting to idealize the hypercolumnar structure by a fiber bundle structure $R \times \mathbb{P}^1 \cong J_1 R$: R = retinal field (base plane) and fiber = set of orientations \cong projective line.

This can be justified to some extent by blowing-up the pinwheel singularities (see Petitot's book)
(i) Diametrically opposite rays correspond to orientations differing by $\pi/2$.
Hypercolumnar crystalline structure of V1

(i) Diametrically opposite rays correspond to orientations differing by $\pi/2$.
(ii) Pinwheels form a crystal lattice on $V1$.

Pascal Chossat*
(i) Diametrically opposite rays correspond to orientations differing by $\pi/2$.

(ii) Pinwheels form a crystal lattice on $V1$.

(iii) Iso-orientation lines define a field of orientations, of which pinwheels are singular points.
(i) Diametrically opposite rays correspond to orientations differing by $\pi/2$.

(ii) Pinwheels form a crystal lattice on $V1$.

(iii) Iso-orientation lines define a field of orientations, of which pinwheels are singular points.

(iv) Tempting to idealize the hypercolumnar structure by a fiber bundle structure $R \times \mathbb{P}^1 \simeq J^1 R$: $R =$ retinal field (base plane) and fiber $=$ set of orientations \simeq projective line.

This can be justified to some extent by blowing-up the pinwheel singularities (see Petitot’s book)
Let \(\gamma \) be a curve in \(\mathbb{R} \simeq \mathbb{R}^2 \) with tangent angle \(\theta \) at \((x, y)\). \(\gamma \) lifts to the curve \(\Gamma = \{(x, y, \theta)\} \) in \(J^1\mathbb{R} \simeq \mathbb{R} \times S^1 \) (\(\theta \in [0, \pi] \)). This allows to replace the evaluation of \(dy/dx \) at each \((x, y)\) in \(\gamma \) by the selection of a point in the fiber bundle: much more efficient!

\(\Gamma \) is the lift of a curve in \(\mathbb{R} \) if any tangent vector to \(\Gamma \) belongs to the kernel of the differential 1-form \(\omega = \cos(\theta) dy - \sin(\theta) dx \).

\(\ker \omega \) defines a distribution of planes (called horizontal) in \(T (\mathbb{R} \times S^1) \), spanned at each point \((x, y, \theta)\) by \(\cos(\theta) \partial_x + \sin(\theta) \partial_y \) and \(\partial_\theta \).

This distribution of planes defines a contact structure: \(\omega \wedge d\omega > 0 \Rightarrow \) it is not integrable in \(\mathbb{R} \times S^1 \) (Froebenius theorem). It is devoted to path (contour) integration.

It is tempting to say that pinwheels and their iso-orientation rays represent a discrete neural implementation of this contact structure. But how does the brain proceed to compare orientations at remote points in \(\mathbb{R}^2 \)?
Let γ be a curve in $R \simeq \mathbb{R}^2$ with tangent angle θ at (x, y).
γ lifts to the curve $\Gamma = \{(x, y, \theta)\}$ in $J^1 R \simeq R \times S^1 \ (\theta \in [0, \pi))$.
This allows to replace the evaluation of dy/dx at each $(x, y) \in \gamma$ by the selection of a point in the fiber bundle: much more efficient!
The fiber bundle $V1$ as an efficient detector of contours

- Let γ be a curve in $R \cong \mathbb{R}^2$ with tangent angle θ at (x, y). γ lifts to the curve $\Gamma = \{(x, y, \theta)\}$ in $J^1R \cong R \times S^1 (\theta \in [0, \pi))$. This allows to replace the evaluation of dy/dx at each $(x, y) \in \gamma$ by the selection of a point in the fiber bundle: much more efficient!

- Γ is the lift of a curve in R if any tangent vector to Γ belongs to the kernel of the differential 1-form $\omega = \cos(\theta)dy - \sin(\theta)dx$.

- $\ker \omega$ defines a distribution of planes (called horizontal) in $T(R \times S^1)$, spanned at each point (x, y, θ) by $\cos(\theta)\partial_x + \sin(\theta)\partial_y$ and ∂_θ.

Pascal Chossat* 28 / 79
Let γ be a curve in $R \simeq \mathbb{R}^2$ with tangent angle θ at (x, y). γ lifts to the curve $\Gamma = \{(x, y, \theta)\}$ in $J^1 R \simeq R \times S^1$ ($\theta \in [0, \pi]$).

This allows to replace the evaluation of dy/dx at each $(x, y) \in \gamma$ by the selection of a point in the fiber bundle: much more efficient!

Γ is the lift of a curve in R if any tangent vector to Γ belongs to the kernel of the differential 1-form $\omega = \cos(\theta)dy - \sin(\theta)dx$.

$\ker \omega$ defines a distribution of planes (called horizontal) in $T(R \times S^1)$, spanned at each point (x, y, θ) by $\cos(\theta)\partial_x + \sin(\theta)\partial_y$ and ∂_{θ}.

This distribution of planes defines a contact structure: $\omega \wedge d\omega > 0 \Rightarrow$ it is not integrable in $R \times S^1$ (Froebenius theorem). It is devoted to path (contour) integration.
The fiber bundle $V1$ as an efficient detector of contours

Let γ be a curve in $R \simeq \mathbb{R}^2$ with tangent angle θ at (x, y). γ lifts to the curve $\Gamma = \{(x, y, \theta)\}$ in $J^1 R \simeq R \times S^1 (\theta \in [0, \pi))$. This allows to replace the evaluation of dy/dx at each $(x, y) \in \gamma$ by the selection of a point in the fiber bundle: much more efficient!

Γ is the lift of a curve in R if any tangent vector to Γ belongs to the kernel of the differential 1-form $\omega = \cos(\theta)dy - \sin(\theta)dx$.

$\ker \omega$ defines a distribution of planes (called horizontal) in $T(R \times S^1)$, spanned at each point (x, y, θ) by $\cos(\theta)\partial_x + \sin(\theta)\partial_y$ and ∂_θ.

This distribution of planes defines a contact structure: $\omega \wedge d\omega > 0 \Rightarrow$ it is not integrable in $R \times S^1$ (Frobenius theorem). It is devoted to path (contour) integration.

It is tempting to say that pinwheels and their iso-orientation rays represent a discrete neural implementation of this contact structure.

But how does the brain proceed to compare orientations at remote points in R?
Long-range horizontal connections in V1

Experiments show:
(i) Neurons with long-range axons connect preferentially to neurons with the same orientation in other hypercolumns.
(ii) Coaxiality: the path of connections tends to be aligned with orientation.
Experiments show:
(i) Neurons with long-range axons connect preferentially to neurons with the same orientation in other hypercolumns.
(ii) Coaxiality: the path of connections tends to be aligned with orientation.

In contrast, note that within the hypercolumn the field of connections looks quite isotropic: it equally reaches all orientations.
$SE(2) = \mathbb{R}^2 \ltimes SO(2)$ is the Lie group of rigid displacements in the plane, with product $(t, r_\phi) \cdot (t', r_{\phi'}) = (t + r_\phi t', r_{\phi + \phi'})$.

\footnotesize{Pascal Chossat*

Citti & Sarti 2006, Petitot 2003 → nice formulation using the subriemannian metric induced by the contact structure.}
V1 as the Lie group of displacements in the plane

- $SE(2) = \mathbb{R}^2 \times SO(2)$ is the Lie group of rigid displacements in the plane, with product $(t, r\phi) \cdot (t', r\phi') = (t + r\phi t', r\phi + \phi')$.
- $SE(2)$ is the principal bundle associated with $R \times \mathbb{P}^1$: $\mathbb{R}^2 \simeq SE(2)/SO(2)$.

Remark. This is different from Mumford’s Elastica formulation, which sits in the base plane \mathbb{R} and minimizes an energy $\gamma^\alpha \kappa^\beta$ where κ is the curvature.
V1 as the Lie group of displacements in the plane

- $SE(2) = \mathbb{R}^2 \ltimes SO(2)$ is the Lie group of rigid displacements in the plane, with product $(t, r\phi) \cdot (t', r\phi') = (t + r\phi t', r\phi + \phi')$.
- $SE(2)$ is the principal bundle associated with $R \times \mathbb{P}^1$: $\mathbb{R}^2 \simeq SE(2)/SO(2)$.
- Then ω is invariant under the action of $SE(2)$ on $T(\mathbb{R}^2 \times SO(2))$: any two horizontal planes in $\mathbb{R}^2 \times SO(2)$ can be equivariantly identified by a suitable displacement.

The distribution of horizontal planes realizes a connection in $R \times SO(2)$, allowing for parallel transport, covariant derivation...
$SE(2) = \mathbb{R}^2 \times SO(2)$ is the Lie group of rigid displacements in the plane, with product $(t, r_\phi) \cdot (t', r_{\phi'}) = (t + r_\phi t', r_{\phi + \phi'})$.

$SE(2)$ is the principal bundle associated with $R \times \mathbb{P}^1$: $\mathbb{R}^2 \simeq SE(2)/SO(2)$.

Then ω is invariant under the action of $SE(2)$ on $T(\mathbb{R}^2 \times SO(2))$: any two horizontal planes in $\mathbb{R}^2 \times SO(2)$ can be equivariantly identified by a suitable displacement.

The distribution of horizontal planes realizes a connection in $R \times SO(2)$, allowing for parallel transport, covariant derivation...

The long-range horizontal connections implement this connection.
V1 as the Lie group of displacements in the plane

- $SE(2) = \mathbb{R}^2 \times SO(2)$ is the Lie group of rigid displacements in the plane, with product $(t, r_\phi) \cdot (t', r_{\phi'}) = (t + r_\phi t', r_{\phi + \phi'})$.

- $SE(2)$ is the principal bundle associated with $R \times \mathbb{P}^1$: $\mathbb{R}^2 \simeq SE(2)/SO(2)$.

- Then ω is invariant under the action of $SE(2)$ on $T(\mathbb{R}^2 \times SO(2))$: any two horizontal planes in $\mathbb{R}^2 \times SO(2)$ can be equivariantly identified by a suitable displacement.

 The distribution of horizontal planes realizes a connection in $R \times SO(2)$, allowing for parallel transport, covariant derivation...

- The long-range horizontal connections implement this connection.

- Application to illusory contours: problem of minimizing length in $J^1_{\mathbb{R}}$ or $SE(2)$ under constraint $\ker \omega = 0$.

 Citti & Sarti 2006, Petitot 2003 —> nice formulation using the subriemannian metric induced by the contact structure.

- Remark. this is different from Mumford’s Elastica formulation, which sits in the base plane R and minimizes an energy $\int_\gamma \alpha \kappa + \beta$ where κ is the curvature.
Geometric hallucinations as a spontaneous activity in V1

Drugs diffusing homogeneously in the brain can induce visual hallucinatory patterns. Examples under marijuana or LSD:

(from Bressloff et al 2001)
Bressloff, Cowan & Golubitsky theory of hallucinations (2001)

Wilson-Cowan equation for the averaged action potential of neural field:

\[
\frac{da(x, \theta, t)}{dt} = -a(x, \theta, t) + \int_{\mathbb{R}^2} \int_0^{2\pi} w(x, \theta; x', \theta') S_{\mu}(a(x', \theta', t)) \, d\theta' \, dx' + I_{\text{ext}} S_{\mu} = \text{sigmoid function, } S_{\mu}(0) = 0, S_{\mu}'(0) = \mu (\text{bifurcation parameter}).
\]

\[
I_{\text{ext}} = 0 \quad (\text{no external input}), \quad w = \text{synaptic strength between neurons.}
\]

The contact structure of \(V_1 \) must be encoded in the function \(w \):

\[
w(x, \theta; x', \theta') = w_{\text{loc}}(\theta, \theta') + w_{\text{lat}}(x, \theta; x', \theta')
\]

where \(w_{\text{loc}} \) is \(S_1 \)-invariant (mod \(\pi \)) and \(w_{\text{lat}} \) is \(E(2) \times S_1 \)-invariant with the orientation and coaxiality constraints of long range neural connections.

Bifurcation analysis `a la Turing`

1. Basic state \(a = 0 \) marginally stable at critical \(\mu = \mu_c \).
2. Look for spatially periodic solutions in \(\mathbb{R}^2 \) (invariant patterns on a rectangular, square or hexagonal lattice \(\Gamma \)).
3. Classical equivariant bifurcation analysis on the torus \(\mathbb{R}^2 / \Gamma \times S_1 \).
Wilson-Cowan equation for the averaged action potential a of neural field:

\[
(*) \quad \frac{da(x, \theta, t)}{dt} = -a(x, \theta, t) + \int_{\mathbb{R}^2} \int_0^\pi w(x, \theta; x', \theta') S_\mu(a(x', \theta', t)) d\theta' dx' + I_{\text{ext}}
\]

$S_\mu = \text{sigmoid function}, \ S_\mu(0) = 0, \ S'_\mu(0) = \mu$ (bifurcation parameter).

$I_{\text{ext}} = 0$ (no external input), $w = \text{synaptic strength between neurons.}$
Wilson-Cowan equation for the averaged action potential a of neural field:

\[
(*) \quad \frac{da(x, \theta, t)}{dt} = -a(x, \theta, t) + \int_{\mathbb{R}^2} \int_{0}^{\pi} w(x, \theta; x', \theta') S_{\mu}(a(x', \theta', t)) d\theta' dx' + I_{\text{ext}}
\]

$S_{\mu} = \text{sigmoid function}, \quad S_{\mu}(0) = 0, \quad S'_{\mu}(0) = \mu \quad (\text{bifurcation parameter}).$

$I_{\text{ext}} = 0 \quad (\text{no external input}), \quad w = \text{synaptic strength between neurons}.$

The contact structure of $V1$ must be encoded in the function w:

\[
w(x, \theta; x', \theta') = w_{\text{loc}}(\theta, \theta') + w_{\text{lat}}(x, \theta; x', \theta')
\]

where w_{loc} is S^1-invariant (mod π) and w_{lat} is $E(2) \times S^1$-invariant with the orientation and coaxiality constraints of long range neural connections.
Wilson-Cowan equation for the averaged action potential a of neural field:

\[
(*) \quad \frac{da(x, \theta, t)}{dt} = -a(x, \theta, t) + \int_{\mathbb{R}^2} \int_0^\pi w(x, \theta; x', \theta') S_\mu(a(x', \theta', t)) d\theta' dx' + I_{ext}
\]

$S_\mu = \text{sigmoid function, } S_\mu(0) = 0, \ S'_\mu(0) = \mu \ (\text{bifurcation parameter})$.

$I_{ext} = 0 \text{ (no external input)}, \ w = \text{synaptic strength between neurons}$.

The contact structure of $V1$ must be encoded in the function w:

\[
w(x, \theta; x', \theta') = w_{loc}(\theta, \theta') + w_{lat}(x, \theta; x', \theta')
\]

where w_{loc} is \mathbb{S}^1-invariant (mod π) and w_{lat} is $E(2) \times \mathbb{S}^1$-invariant with the orientation and coaxiality constraints of long range neural connections.

Bifurcation analysis “à la Turing”

1. Basic state $a = 0$ marginally stable at critical $\mu = \mu_c$.
2. Look for spatially periodic solutions in \mathbb{R}^2 (invariant patterns on a rectangular, square or hexagonal lattice Γ).
3. Classical equivariant bifurcation analysis on the torus $\mathbb{R}^2 / \Gamma \times \mathbb{S}^1$.

Pascal Chossat*
Examples of geometric hallucination

In \mathbb{R}^2 plane periodic patterns with or without contours. Applying inverse retinotopic map → image in the visual field.

Hexagonal pattern with no contour

Square pattern with contours
The symplectic structure of V1

The contact form ω canonically induces a symplectic structure by noting that $r\omega$ induces the same contact form for all $r \in \mathbb{R}^*$ and $(x, y, \theta, r) \in T^* \mathbb{R}$. If we set $\tilde{\omega} = r\omega$, then $d\tilde{\omega}$ is a symplectic form on $T^* \mathbb{R}$ (see Arnold’s Math Methods of Classical Mechanics).
The symplectic structure of V^1

The contact form ω canonically induces a symplectic structure by noting that $r\omega$ induces the same contact form for all $r \in \mathbb{R}^*$ and $(x, y, \theta, r) \in T^* \mathbb{R}$. If we set $\tilde{\omega} = r\omega$, then $d\tilde{\omega}$ is a symplectic form on $T^* \mathbb{R}$ (see Arnold’s Math Methods of Classical Mechanics).

Sarti, Citti & Petitot (Biol. Cybernetics 2008): $r = e^\sigma$ where σ is the scale of the receptive field.
Scale is detected by neurons in V^1 and experiments indicate that iso-scale curves are \sim orthogonal to iso-orientation curves.
Hence V^1 implements the cotangent bundle symplectic structure and $d\tilde{\omega}$ is $SE(2) \times \mathbb{R}_+^*$-invariant.
The symplectic structure of V_1

The contact form ω canonically induces a symplectic structure by noting that $r\omega$ induces the same contact form for all $r \in \mathbb{R}^*$ and $(x, y, \theta, r) \in T^*\mathbb{R}$. If we set $\tilde{\omega} = r\omega$, then $d\tilde{\omega}$ is a symplectic form on $T^*\mathbb{R}$ (see Arnold’s Math Methods of Classical Mechanics).

Sarti, Citti & Petitot (Biol. Cybernetics 2008): $r = e^\sigma$ where σ is the scale of the receptive field. Scale is detected by neurons in V_1 and experiments indicate that iso-scale curves are \sim orthogonal to iso-orientation curves. Hence V_1 implements the cotangent bundle symplectic structure and $d\tilde{\omega}$ is $SE(2) \times \mathbb{R}_+^*$-invariant.

This structure can explain how V_1 spontaneously extracts a medial axis from a contoured figure, a problem considered as fundamental by René Thom, David Mumford, ... : analogue to Huygens principle in optics.
The structure tensor model of V1

To improve the "ring model" O. Faugeras and P.C. (Plos Comp Bio 2009) assumed that neurons are sensitive to the structure tensor of the image, which is known in computer vision to be a good detector for image textures.
To improve the "ring model" O. Faugeras and P.C. (Plos Comp Bio 2009) assumed that neurons are sensitive to the structure tensor of the image, which is known in computer vision to be a good detector for image textures.

This model was studied in a series of papers with Gregory Faye (CNRS, U. of Toulouse), see his thesis on https://tel.archives-ouvertes.fr.
The structure tensor model of V1

To improve the ”ring model” O. Faugeras and P.C. (Plos Comp Bio 2009) assumed that neurons are sensitive to the structure tensor of the image, which is known in computer vision to be a good detector for image textures.

This model was studied in a series of papers with Gregory Faye (CNRS, U. of Toulouse), see his thesis on https://tel.archives-ouvertes.fr.

Let $g_\sigma(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$ Gauss function with standard deviation σ.

For the image intensity $I(x, y)$ we set $I_\sigma = I \ast g_{\sigma_1}$.
The structure tensor model of V1

To improve the "ring model" O. Faugeras and P.C. (Plos Comp Bio 2009) assumed that neurons are sensitive to the structure tensor of the image, which is known in computer vision to be a good detector for image textures.

This model was studied in a series of papers with Gregory Faye (CNRS, U. of Toulouse), see his thesis on https://tel.archives-ouvertes.fr.

Let $g_\sigma(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$ Gauss function with standard deviation σ.

For the image intensity $I(x,y)$ we set $I_{\sigma_1} = I * g_{\sigma_1}$.

The structure tensor at the point (x, y) is the matrix

$$T(x, y) = g_{\sigma_2} * \left(\nabla I_{\sigma_1} \nabla^T I_{\sigma_1} \right)$$

σ_2 defines the scale (characteristic size) of the texture to be represented.
The structure tensor model of V1

To improve the ”ring model” O. Faugeras and P.C. (Plos Comp Bio 2009) assumed that neurons are sensitive to the structure tensor of the image, which is known in computer vision to be a good detector for image textures.

This model was studied in a series of papers with Gregory Faye (CNRS, U. of Toulouse), see his thesis on https://tel.archives-ouvertes.fr.

Let \(g_\sigma(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \) Gauss function with standard deviation \(\sigma \).

For the image intensity \(I(x, y) \) we set \(I_{\sigma_1} = I * g_{\sigma_1} \).

The structure tensor at the point \((x, y)\) is the matrix

\[
\mathcal{T}(x, y) = g_{\sigma_2} * \left(\nabla I_{\sigma_1} \nabla^T I_{\sigma_1} \right)
\]

\(\sigma_2 \) defines the scale (characteristic size) of the texture to be represented.

\(\mathcal{T} \) is a symmetric positive definite matrix: \(\{\mathcal{T}\} \simeq \text{SPD}(2) \).

We shall assume that structure tensors are encoded in the hypercolumns of \(V1 \), so that \(V1 \simeq \text{fiber bundle} \mathbb{R}^2 \times \text{SPD}(2) \).

How does this improve the orientation model, and is it a natural assumption?
Basic properties of the structure tensor

The structure tensor T has two real eigenvalues: $\lambda_1 \geq \lambda_2 > 0$ with eigenvectors $e_1 \perp e_2$.

Elementary algebra shows:

$$T = (\lambda_1 - \lambda_2) e_1 e_1^T + \lambda_2 I_2.$$

- $\lambda_1 \approx \lambda_2 \Rightarrow$ isotropic image
- $\lambda_1 \gg \lambda_2 \approx 0 \Rightarrow$ straight edge along e_2
- $\lambda_1 \geq \lambda_2 \gg 0 \Rightarrow$ corner

The size of λ_j defines the contrast along e_j the ellipse $x^T x = 1$.

Let $e_2 = (r \cos \theta, r \sin \theta)$, θ defines the preferred orientation of the neuron.

Note that T is invariant under $\theta \to \theta + \pi$.

In the limit $\lambda_2 = 0$ one recovers the ring model + the contrast along e_1.

There are some biological arguments supporting this model for V_1, see Faye’s thesis (but direct experimental confirmation is missing).
Basic properties of the structure tensor

\(T \) has two real eigenvalues: \(\lambda_1 \geq \lambda_2 > 0 \) with eigenvectors \(e_1 \perp e_2 \).

Elementary algebra shows \(T = (\lambda_1 - \lambda_2)e_1 e_1^T + \lambda_2 I_2 \).

- \(\lambda_1 \approx \lambda_2 \Rightarrow \) isotropic image
- \(\lambda_1 \gg \lambda_2 \approx 0 \Rightarrow \) straight edge along \(e_2 \)
- \(\lambda_1 \geq \lambda_2 \gg 0 \Rightarrow \) corner
- the size of \(\lambda_j \) defines the contrast along \(e_j \)

the ellipse \(x^T T x = 1 \)

\[a = \sqrt{\lambda_1}, \quad b = \sqrt{\lambda_2} \]
Basic properties of the structure tensor

\mathcal{T} has two real eigenvalues: $\lambda_1 \geq \lambda_2 > 0$ with eigenvectors $e_1 \perp e_2$.

Elementary algebra shows $\mathcal{T} = (\lambda_1 - \lambda_2)e_1e_1^T + \lambda_2\mathbf{I}_2$.

- $\lambda_1 \approx \lambda_2 \Rightarrow$ isotropic image
- $\lambda_1 \gg \lambda_2 \approx 0 \Rightarrow$ straight edge along e_2
- $\lambda_1 \geq \lambda_2 \gg 0 \Rightarrow$ corner
- the size of λ_j defines the contrast along e_j

Let $e_2 = (r \cos \theta, r \sin \theta)$, θ defines the preferred orientation of the neuron. Note that \mathcal{T} is invariant under $\theta \rightarrow \theta + \pi$.

In the limit $\lambda_2 = 0$ one recovers the ring model + the contrast along e_1.

The ellipse $x\mathcal{T}x^T = 1$

\[a = \sqrt{\lambda_1}, \quad b = \sqrt{\lambda_2} \]
Basic properties of the structure tensor

\(T \) has two real eigenvalues: \(\lambda_1 \geq \lambda_2 > 0 \) with eigenvectors \(e_1 \perp e_2 \).

Elementary algebra shows \(T = (\lambda_1 - \lambda_2)e_1e_1^T + \lambda_2I_2 \).

- \(\lambda_1 \approx \lambda_2 \Rightarrow \) isotropic image
- \(\lambda_1 \gg \lambda_2 \approx 0 \Rightarrow \) straight edge along \(e_2 \)
- \(\lambda_1 \geq \lambda_2 \gg 0 \Rightarrow \) corner
- the size of \(\lambda_j \) defines the contrast along \(e_j \)

Let \(e_2 = (r \cos \theta, r \sin \theta) \), \(\theta \) defines the preferred orientation of the neuron.

Note that \(T \) is invariant under \(\theta \rightarrow \theta + \pi \).

In the limit \(\lambda_2 = 0 \) one recovers the ring model + the contrast along \(e_1 \).

There are some biological arguments supporting this model for \(V1 \), see Faye’s thesis (but direct experimental confirmation is missing).
Riemannian geometry on the set of structure tensors

\[\text{SPD}(2) \cong Q^+ = \text{space of positive definite quadratic forms } xT x^T \text{ in } \mathbb{R}^2. \]

It is natural to take the metric on \(\text{SPD}(2) \) such that changes of coordinates in \(Q^+ \) leave distances invariant.
Riemannian geometry on the set of structure tensors

\[\text{SPD}(2) \simeq Q^+ = \text{space of positive definite quadratic forms } x \mathcal{T} x^T \text{ in } \mathbb{R}^2. \]

It is natural to take the metric on \(\text{SPD}(2) \) such that changes of coordinates in \(Q^+ \) leave distances invariant.

The following formulation is equivalent and more convenient for our purpose:

\[\mathcal{T} = \Delta \tilde{\mathcal{T}} \text{ where } \det \tilde{\mathcal{T}} = 1. \]

It follows that \(\text{SPD}(2) = \mathbb{R}_+^* \times \text{SSPD}(2). \)
Riemannian geometry on the set of structure tensors

\[\text{SPD}(2) \cong Q^+ = \text{space of positive definite quadratic forms } x^T \mathcal{T} x^T \text{ in } \mathbb{R}^2. \]

It is natural to take the metric on \(\text{SPD}(2) \) such that changes of coordinates in \(Q^+ \) leave distances invariant.

The following formulation is equivalent and more convenient for our purpose:

\[\mathcal{T} = \Delta \tilde{\mathcal{T}} \text{ where } \det \tilde{\mathcal{T}} = 1. \]

It follows that \(\text{SPD}(2) = \mathbb{R}_+^* \times \text{SSPD}(2). \)

Now, \(\text{SSPD}(2) \cong \text{Lorentz surface } H^2 \cong \text{Poincaré disc } \mathbb{D} = \{ z \in \mathbb{C}, |z| < 1 \} \)

(by a suitable stereographic projection,) so that \(\text{SPD}(2) \cong \mathbb{R}_+^* \times \mathbb{D}. \)
Riemannian geometry on the set of structure tensors

\[\text{SPD}(2) \simeq Q^+ = \text{space of positive definite quadratic forms } x T x^T \text{ in } \mathbb{R}^2. \]

It is natural to take the metric on \(\text{SPD}(2) \) such that changes of coordinates in \(Q^+ \) leave distances invariant.

The following formulation is equivalent and more convenient for our purpose:

\[T = \Delta \tilde{T} \text{ where } \det \tilde{T} = 1. \text{ It follows that } \text{SPD}(2) = \mathbb{R}^+_* \times \text{SSPD}(2). \]

Now, \(\text{SSPD}(2) \simeq \text{Lorentz surface } H^2 \simeq \text{Poincaré disc } \mathbb{D} = \{ z \in \mathbb{C}, |z| < 1 \} \)

(by a suitable stereographic projection,) so that \(\text{SPD}(2) \simeq \mathbb{R}^+_* \times \mathbb{D}. \)

This provides us with a metric on \(\text{SPD}(2) \), for which the distance is

\[
d(T, T') = \sqrt{2 \log^2 \left(\frac{\Delta}{\Delta'} \right) + \text{artanh}^2 \left(\frac{|z - z'|}{|1 - \bar{z}z'|} \right)}
\]

The isometry group is now \(\mathbb{R}^+_* \times U(1, 1), \) where \(U(1, 1) \) acts on \(\mathbb{D} \) by

\[
\gamma z = \frac{\alpha z + \beta}{\beta z + \bar{\alpha}}, \quad |\alpha|^2 - |\beta|^2 = 1, \text{ and reflection } \kappa z = \bar{z}.
\]
We concentrate on the activity in a single hypercolumn (disconnected from others), hence bifurcation from homogeneous state in $\mathbb{R}^+ \times D$. Then discard the $\mathbb{R}^+ \times D$ component (easy part).

- Problem of Turing-like pattern formation in D.

Sketch of the method:

1. $\partial_t a(T, t) = -a(T, t) + R D \cdot w(D(T); T') S\mu(a(T', t)) dT'$ where $S\mu$ is sigmoid s.t. $S\mu(0) = 0$, $S'\mu(0) = \mu$.

2. Linear stability analysis: Fourier-Helgason spectral decomp. \rightarrow critical μ.

3. Continuous spectrum \rightarrow look for "periodic" solutions in D to reduce to a problem with discrete spectrum, in order to apply classical equivariant bifurcation methods.

Reference: in the context of parabolic PDEs in D, see my paper with G. Faye: Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane, J. Dyn & Diff Equations, Online First (2013).
Spontaneous tuning of structure tensors in V1

We concentrate on the activity in a single hypercolumn (disconnected from others), hence bifurcation from homogeneous state in $\mathbb{R}^+ \times \mathbb{D}$. Then discard the \mathbb{R}^+ component (easy part).
We concentrate on the activity in a single hypercolumn (disconnected from others), hence bifurcation from homogeneous state in $\mathbb{R}_+^* \times \mathbb{D}$. Then discard the \mathbb{R}_+^* component (easy part).

\rightarrow problem of Turing-like pattern formation in \mathbb{D}.

Spontaneous tuning of structure tensors in V^1

We concentrate on the activity in a single hypercolumn (disconnected from others), hence bifurcation from homogeneous state in $\mathbb{R}^+_* \times \mathbb{D}$. Then discard the \mathbb{R}^+_* component (easy part).

\rightarrow problem of Turing-like pattern formation in \mathbb{D}.

Sketch of the method:

1. $\partial_t a(T, t) = -a(T, t) + \int_{\mathbb{D}} w(d_{\mathbb{D}}(T; T')) S_\mu(a(T', t)) dT'$
 where S_μ sigmoid s.t. $S_\mu(0) = 0, S'_\mu(0) = \mu$.

2. Linear stability analysis: Fourier-Helgason spectral decomp. \rightarrow critical μ.

3. Continuous spectrum \rightarrow look for ”periodic” solutions in \mathbb{D} to reduce to a problem with discrete spectrum, in order to apply classical equivariant bifurcation methods.
We concentrate on the activity in a single hypercolumn (disconnected from others), hence bifurcation from homogeneous state in $\mathbb{R}_+^* \times \mathbb{D}$. Then discard the \mathbb{R}_+^* component (easy part).

→ problem of Turing-like pattern formation in \mathbb{D}.

Sketch of the method:

1. $\partial_t a(T, t) = -a(T, t) + \int_{\mathbb{D}} w(d_{\mathbb{D}}(T; T')) S_\mu(a(T', t)) d T'$
 where S_μ sigmoid s.t. $S_\mu(0) = 0$, $S_\mu'(0) = \mu$.

2. Linear stability analysis: Fourier-Helgason spectral decomp. → critical μ.

3. Continuous spectrum → look for "periodic" solutions in \mathbb{D} to reduce to a problem with discrete spectrum, in order to apply classical equivariant bifurcation methods.

Reference: in the context of parabolic PDEs in \mathbb{D}, see my paper with G. Faye:

Harmonic and spectral analysis in \mathbb{D}

$Iwasa$ Theorem:

$SU(1,1) = KAN$ were K, A, N are 1-parameter subgroups with orbits rotations hyperbolic boosts parabolic transformations

Harmonic analysis in \mathbb{D} (Fourier-Helgason): based on elementary eigenfunctions $e^{\rho, b}(z) =$ $e^{(i\rho + 1/2)\langle z, b \rangle}$, $\rho \in \mathbb{C}$, where $b \in \partial \mathbb{D}$ and $\langle z, b \rangle$ is a distance built from horocycle based at b and passing by z.

It satisfies $-\Delta \mathbb{D} e^{\rho, b} = (\rho^2 + 1/4) e^{\rho, b}$. It allows to build a "Fourier transform" in $\mathbb{D} \rightarrow$ spectral analysis.
Harmonic and spectral analysis in \mathbb{D}

Subgroup of direct isometries (displacements) in $U(1,1)$: pseudo-unitary group $SU(1,1)$ acting in \mathbb{D} by $\gamma z = \frac{\alpha z + \beta}{\beta z + \bar{\alpha}}$, $|\alpha|^2 - |\beta|^2 = 1$.

Iwasa Theorem: $SU(1,1) = KAN$ where K, A, N are 1-parameter subgroups with orbits rotations, hyperbolic boosts, parabolic transformations.

Harmonic analysis in \mathbb{D} (Fourier-Helgason): based on elementary eigenfunctions $e_\rho, b(z) = e^{i\rho + \frac{1}{2}} \langle z, b \rangle$, $\rho \in \mathbb{C}$, where $b \in \partial \mathbb{D}$ and $\langle z, b \rangle$ is a distance built from horocycle based at b and passing by z.

It satisfies $-\triangle D e_\rho, b = (\rho^2 + \frac{1}{4}) e_\rho, b$. It allows to build a "Fourier transform" in $\mathbb{D} \rightarrow$ spectral analysis.
Harmonic and spectral analysis in \mathbb{D}

- Subgroup of direct isometries (displacements) in $U(1, 1)$: pseudo-unitary group $SU(1, 1)$ acting in \mathbb{D} by $\gamma z = \frac{\alpha z + \beta}{\beta z + \bar{\alpha}}$, $|\alpha|^2 - |\beta|^2 = 1$.

- **Iwasawa Theorem:** $SU(1, 1) = KAN$ were K, A, N are 1-parameter subgroups with orbits

- rotations
- hyperbolic boosts
- parabolic transformations
Harmonic and spectral analysis in \mathbb{D}

- Subgroup of direct isometries (displacements) in $U(1, 1)$: pseudo-unitary group $SU(1, 1)$ acting in \mathbb{D} by $\gamma z = \frac{\alpha z + \beta}{\beta z + \alpha}$, $|\alpha|^2 - |\beta|^2 = 1$.

- Iwasawa Theorem: $SU(1, 1) = KAN$ were K, A, N are 1-parameter subgroups with orbits

- Harmonic analysis in \mathbb{D} (Fourier-Helgason): based on elementary eigenfunctions $e_{\rho, b}(z) = e^{(i\rho + \frac{1}{2})\langle z, b \rangle}$, $\rho \in \mathbb{C}$, where $b \in \partial \mathbb{D}$ and $\langle z, b \rangle$ is a distance built from horocycle based at b and passing by z. It satisfies $-\Delta_\mathbb{D} e_{\rho, b} = (\rho^2 + \frac{1}{4})e_{\rho, b}$. It allows to build a "Fourier transform" in $\mathbb{D} \rightarrow$ spectral analysis.
Periodic pattern formation in the Poincaré disc (sketch)

Let $\Gamma \subset SU(1,1)$ be a discrete subgroup which tiles D from a compact fundamental domain F. Then Γ is spanned by a finite number of hyperbolic boosts. Γ is called a co-compact Fuchsian group (or a lattice group). $D/\Gamma \cong$ compact Riemann surface of genus $g \geq 2$ (a torus with g holes).

The $U(1,1)$-invariant equation projects onto D/Γ to a G_Γ-invariant equation where G_Γ is the symmetry group of F_Γ (seen as a g-torus). G_Γ is a finite group \rightarrow finite dimensional irreducible representations.

Hence standard techniques (center manifold theorem) apply to reduce the bifurcation problem to one in a finite dimensional space (irrep of G_Γ).

For a given Γ the area of a fundamental region is fixed (by Gauss-Bonnet formula) \rightarrow no scale equivalence between lattices as in Euclidean plane. There are an infinite number of lattices in D.
Let $\Gamma \subset SU(1, 1)$ be a discrete subgroup which tiles \mathbb{D} from a compact fundamental domain F_Γ (polygon). Then Γ is spanned by a finite number of hyperbolic boosts. Γ is called a cocompact Fuchsian group (or a lattice group).
Let $\Gamma \subset SU(1, 1)$ be a discrete subgroup which tiles \mathbb{D} from a compact fundamental domain F_Γ (polygon).
Then Γ is spanned by a finite number of hyperbolic boosts. Γ is called a **cocompact Fuchsian group** (or a **lattice group**).

$\mathbb{D}/\Gamma \simeq$ compact Riemann surface of genus $g \geq 2$ (a torus with g holes).
\simeq polygon F_Γ with opposite sides identified by periodicity.
Let $\Gamma \subset SU(1, 1)$ be a discrete subgroup which tiles \mathbb{D} from a compact fundamental domain F_Γ (polygon). Then Γ is spanned by a finite number of hyperbolic boosts. Γ is called a cocompact Fuchsian group (or a lattice group).

$\mathbb{D}/\Gamma \cong$ compact Riemann surface of genus $g \geq 2$ (a torus with g holes). \cong polygon F_Γ with opposite sides identified by periodicity.

The $U(1, 1)$-invariant equation projects onto \mathbb{D}/Γ to a G_Γ-invariant equation where G_Γ is the symmetry group of F_Γ (seen as a g-torus).
Let $\Gamma \subset SU(1,1)$ be a discrete subgroup which tiles \mathbb{D} from a compact fundamental domain F_Γ (polygon).

Then Γ is spanned by a finite number of hyperbolic boosts.

Γ is called a **cocompact Fuchsian group** (or a **lattice group**).

\[\mathbb{D}/\Gamma \simeq \text{compact Riemann surface of genus } g \geq 2 \text{ (a torus with } g \text{ holes)}. \]

\[\simeq \text{polygon } F_\Gamma \text{ with opposite sides identified by periodicity}. \]

The $U(1,1)$-invariant equation projects onto \mathbb{D}/Γ to a G_Γ-invariant equation where G_Γ is the symmetry group of F_Γ (seen as a g-torus).

G_Γ is a finite group \rightarrow **finite dimensional irreducible representations**.

Hence standard techniques (center manifold theorem) apply to reduce the bifurcation problem to one in a finite dimensional space (irrep of G_Γ).
Periodic pattern formation in the Poincaré disc (sketch)

- Let $\Gamma \subset SU(1,1)$ be a discrete subgroup which tiles \mathbb{D} from a compact fundamental domain F_Γ (polygon).
 Then Γ is spanned by a finite number of hyperbolic boosts.
 Γ is called a cocompact Fuchsian group (or a lattice group).

- $\mathbb{D}/\Gamma \simeq$ compact Riemann surface of genus $g \geq 2$ (a torus with g holes).
 \simeq polygon F_Γ with opposite sides identified by periodicity.

- The $U(1,1)$-invariant equation projects onto \mathbb{D}/Γ to a G_Γ-invariant equation where G_Γ is the symmetry group of F_Γ (seen as a g-torus).

- G_Γ is a finite group \rightarrow finite dimensional irreducible representations.
 Hence standard techniques (center manifold theorem) apply to reduce the bifurcation problem to one in a finite dimensional space (irrep of G_Γ).

- For a given Γ the area of a fundamental region is fixed (by Gauss-Bonnet formula) \rightarrow no scale equivalence between lattices as in Euclidean plane.

- There are an infinite number of lattices in \mathbb{D}.
Periodic patterns with a regular octagonal domain F_T

This is the simplest example of a lattice on \mathbb{D}.

- The regular octagonal lattice group Γ is generated by four hyperbolic boosts.
- Vertex angles $\pi/8$, area 4π.
- $\mathbb{D}/\Gamma \simeq$ double torus (genus 2).
- $G_\Gamma = G_0 \cup \kappa G_0$ where $\kappa : z \rightarrow \bar{z}$ and $G_0 \simeq GL(2, 3)$ ($|G_0| = 48$).
Periodic patterns with a regular octagonal domain F_Γ

This is the simplest example of a lattice on \mathbb{D}.

- The regular octagonal lattice group Γ is generated by four hyperbolic boosts.
- Vertex angles $\pi/8$, area 4π.
- $\mathbb{D}/\Gamma \simeq$ double torus (genus 2).
- $G_\Gamma = G_0 \cup \kappa G_0$ where $\kappa : z \to \bar{z}$ and $G_0 \simeq GL(2, 3)$ ($|G_0| = 48$).

- 13 irreducible representations of $G_\Gamma \rightarrow$ 13 different bifurcation problems: 4 with dim 1, 2 with dim 2, 4 with dim 3 and 3 with dim 4.
- All "generic" bifurcating patterns have been described in Faye & C. 2011.
An example with a 1-dim. representation of G_Γ

This is the axis of Γ-periodic states which are invariant under the 48-element subgroup of G_Γ generated by $SL(2, 3) = \{ g \in GL(2, 3) \mid \det(g) = 1 \}$ and a reflection. Bifurcation is pitchfork.
An example with a 1-dim. representation of G_{Γ}

This is the axis of Γ-periodic states which are invariant under the 48-element subgroup of G_{Γ} generated by $SL(2,3) = \{ g \in GL(2,3) \mid \det(g) = 1 \}$ and a reflection. Bifurcation is pitchfork.

Remark: the numerical computation of Γ-periodic hyperbolic harmonics is tricky. There is no explicit formula (unlike in Euclidean case). Need to decompose F_{Γ} in fundamental triangles tiling it by reflections, then apply finite elements numerical schemes.

Pascal Chossat*